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Differential geometry of hydrodynamic Vlasov equations
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Abstract

We consider hydrodynamic chains in (1+1) dimensions which are Hamiltonian with respect to the Kupershmidt–Manin Poisson
bracket. These systems can be derived from single (2 + 1) equations, here called hydrodynamic Vlasov equations, under the map
An

=
∫

∞

−∞
pn f dp. For these equations an analogue of the Dubrovin–Novikov Hamiltonian structure is constructed. The Vlasov

formalism allows us to describe objects like the Haantjes tensor for such a chain in a much more compact and computable way. We
prove that the necessary conditions found by Ferapontov and Marshall in [E.V. Ferapontov, D.G. Marshall, Differential–geometric
approach to the integrability of hydrodynamic chains: The Haantjes tensor. arXiv:nlin.SI/0505013, 2005] for the integrability of
these hydrodynamic chains are also sufficient.
c© 2007 Elsevier B.V. All rights reserved.

Keywords: Dispersionless integrable systems; Tests for integrability; Hamiltonian structures

1. Systems of hydrodynamic type

Systems of hydrodynamic type are quasilinear first-order PDE of the form

ui
t = vi

j (u)u j
x , i, j = 1...N , (1)

where (x, t) are the independent and (u1, . . . , uN ) the dependent variables. Here and below sums over repeated indices
are assumed. A Hamiltonian formalism for systems of this type was introduced in [2] by Dubrovin and Novikov, who
defined a Poisson bracket of the form

{Iα, Iβ} =

∫
δ Iα

δui (x)
Π i j δ Iβ

δu j (x)
dx . (2)

Here Iα, Iβ are functionals of the ui (x) and the first-order differential operator Π i j is given by

Π i j
= gi j (u)

∂

∂x
+ bi j

k (u)uk
x . (3)
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They showed that this is a Hamiltonian structure if gi j is a nonsingular contravariant metric and bi j
k = −gisΓ j

sk ,
where Γ i

jk is a symmetric connection of zero curvature that is compatible with the metric gi j . It is immediate that a
Hamiltonian of the form

H =

∫
h(u)dx, (4)

where h(u) is independent of ux , uxx , . . . , together with the Hamiltonian structure (2), leads to an equation of
hydrodynamic type, specifically

ui
t = {ui , H} =

(
gi j∂x + bi j

k uk
x

) ∂h
∂u j . (5)

An obvious problem related to systems of hydrodynamic type (1) is determining whether such a system is integrable,
in the sense that it admits infinitely many conserved densities and commuting flows; in [3], Tsarev proved that this is
true if the system is hyperbolic and can be written in diagonal form

Ri
t = λi (R)Ri

x ,

where Ri are called the Riemann invariants and the λi (called the characteristic velocities) satisfy the semi-
Hamiltonian condition

∂k

(
∂ jλ

i

λ j − λi

)
= ∂ j

(
∂kλ

i

λk − λi

)
,

where ∂k = ∂/∂ Rk . With these hypotheses, the system can then be integrated by the generalized hodograph
transformation [3]. We remark that the semi-Hamiltonian property is automatically satisfied for a Hamiltonian
system with Dubrovin–Novikov Hamiltonian structure, and that the conditions for the system to be respectively
diagonalizable, or semi-Hamiltonian, can be written invariantly; each corresponds to the vanishing of some tensor [5,
4]. In particular, for the diagonalizability condition, if one defines the Nijenhuis tensor of the matrix vi

j by

N i
jk = vs

j
∂vi

k
∂us − vs

k

∂vi
j

∂us − vi
s

(
∂vs

k
∂u j −

∂vs
j

∂uk

)
,

and then the Haantjes tensor by

H i
jk = N i

αβvα
j v

β
k − Nα

jβvi
αv

β
k − Nα

βkv
i
αv

β
j + Nα

jkv
i
βvβ

α

then we have the following:

Theorem 1.1 ([5]). A hydrodynamic type system with mutually distinct characteristic speeds is diagonalizable if and
only if the corresponding Haantjes tensor vanishes identically.

1.1. Hydrodynamic chains

Hydrodynamic chains are defined as a natural generalization of systems of hydrodynamic type, letting the number
of variables and equations go to infinity. More specifically, we consider, following Ferapontov and Marshall [1],
systems of the type

At = V (A)Ax , (6)

where A = (A0, A1, . . .)t is an infinite column vector and V (A) is an ∞ × ∞ matrix, with the following properties
(see [1,6]):

(1) for every row only finitely many elements are nonzero,
(2) every element of the matrix depends only on a finite number of variables.
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The variables (A0, A1, . . .) are usually called moments. The most famous example of a hydrodynamic chain is the
Benney chain,

An
t + An+1

x + n An−1 A0
x = 0, n = 0, 1, . . . (7)

which was derived in [7] from the study of long nonlinear waves on a shallow perfect fluid with a free surface.
Kupershmidt and Manin [8,9] found a Hamiltonian formulation,

An
t =

{
An, H

}
KM = Π nm δH

δAm ,

given by the Poisson operator

Π nm
= (n + m)An+m−1 d

dx
+ m An+m−1

x , n, m = 0, 1, . . . (8)

called the Kupershmidt–Manin bracket (KM bracket), together with the Hamiltonian

H =

∫ (
1
2
(A0)2

+
1
2

A2
)

dx . (9)

The KM bracket (8) has been considered (see, for example, [10]) as an infinite dimensional example of the
Dubrovin–Novikov structure. The general chain arising in this way, with a Hamiltonian density

h(A0, . . . , AN−1), (10)

takes the form

An
t =

N−1∑
m,l=0

(m + n)Am+n−1hml Al
x +

N−1∑
m=0

mhm Am+n−1
x , n = 0, 1, . . . . (11)

Here we have used the notation hi =
∂h
∂ Ai , where i = 0, 1, . . . . Compared with the finite dimensional case of Section 1,

the theory of infinite dimensional Poisson brackets of hydrodynamic type is not so well developed; however, other
examples of such Poisson brackets were given in [11] as a generalization of the Kupershmidt–Manin bracket (8),
while the problem of the classification of such chains has been approached recently in [12]. The problem of finding
integrable hydrodynamic chains was first approached in a systematic way by Kupershmidt [11], and, more recently
and with different approaches, by Pavlov [12–16], Ferapontov and Marshall [1], and Ferapontov, Khusnutdinova,
Marshall and Pavlov [6].

In particular, in [1], the authors introduced an approach based on the Haantjes tensor, generalizing Tsarev’s
results [3] for finite dimensional systems. For hydrodynamic chains, calculation of any one component of this tensor
only involves finite sums and hence is computable. Following this criterion, Ferapontov and Marshall considered
Hamiltonian densities depending only on the first three moments

h = h(A0, A1, A2),

together with the KM bracket (8), and they looked for the condition on the Hamiltonian for the system to have zero
Haantjes tensor. They found that the conditions

H0
jk = 0, j, k = 0, 1, 2, . . .
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on the first upper component give a complete system of ten third-order quasilinear partial differential equations, of
which the simplest are

h222 =
5h2

22
2h2

, h022 =
5h02h22

2h2
, h122 =

5h12h22

2h2
,

h002 =
3h2

02 + 2h00h22

2h2
,

h012 =
3h02h12 + 2h01h22

2h2
,

h112 =
3h2

12 + 2h11h22

2h2
.

(12)

The last four equations are much more cumbersome.

Remark 1. The list of equations above differs from the original paper [1] only in the names of the variables, as [1]
uses un

= An−1, n = 1, 2, . . . .

What Ferapontov and Marshall found were thus necessary conditions for the integrability of the chain. Remarkably,
they were able to solve this system; some of the solutions they found correspond to known integrable systems
(correcting some errors in previous work), while the others, a much larger class, corresponded to systems since shown
to be integrable. This result suggested a conjecture that the conditions above are not only necessary, but also sufficient.

Remark 2. In a subsequent paper [6], a similar problem was discussed, but with a Hamiltonian H(A0, A1), and the
(α − β) Hamiltonian structure,

Π i j
(αβ) = (α(i + j) + β) Ai+ j−1 d

dx
+ (α j + β) Ai+ j−1

x , (13)

which generalizes the KM bracket (8). It is interesting to remark that in this case too, the conditions for H0
jk = 0 give

a complete set of equations for the third derivatives of the Hamiltonian, and that for these systems it was shown that
the conditions are indeed sufficient.

In the last section of this paper we will prove that the conditions (12) found by Ferapontov and Marshall are not only
necessary for the vanishing of the Haantjes tensor, but also sufficient. In order to do this, though, we need to develop
a somewhat different formalism.

2. Vlasov formalism for Hamiltonian hydrodynamic chains

In this section we define the Vlasov equations, and we recall [17] how a special class of these equations can be
related to hydrodynamic chains which are Hamiltonian with respect to the Kupershmidt–Manin bracket. Moreover,
we show how to construct all the differential geometric objects related to such chains in the Vlasov picture.
Let f (x, p, t) be a distribution function in the in the (1 + 1)-dimensional phase space, and consider the Lie–Poisson
bracket

{J, H}LP :=

∫∫
f
{

δ J
δ f

,
δH
δ f

}
x,p

dpdx, (14)

where H, K are functionals of f and where the bracket {, }x,p is the canonical ‘single-particle’ Poisson bracket.
Hamilton’s equations related to such brackets,

ft = { f, H}LP,

or, equivalently,

ft +

{
f,

δH
δ f

}
x,p

= 0,



J. Gibbons, A. Raimondo / Journal of Geometry and Physics 57 (2007) 1815–1828 1819

are called Vlasov equations, and they arise in the theories of plasma physics and vortex dynamics. The relation between
these equations and the hydrodynamic chains of the previous section is obtained by defining

µ : f (p, x, t) 7−→
{

An(x, t)
}∞

n=0 (15)

An
=

∫
pn f dp,

where the integral above converges, for example, if f is bounded and | f | → 0 faster than |p|
−n, ∀n > 1.

As was shown in [17] by one of the present authors, if we restrict the bracket (14) to functionals depending on the
moments alone:

H = H(A0, . . . , AN−1)

then the Lie–Poisson bracket restricts to the Kupershmidt–Manin Poisson bracket (8):

{J, H}LP ≡ {J, H}KM.

In order to prove this, is sufficient to use the chain rule for the map µ:

δH(A0, . . . AN−1)

δ f
=

N−1∑
n=0

δH
δAn

δAn

δ f
=

N−1∑
n=0

δH
δAn pn, (16)

and then the KM bracket arises as the push forward of the L–P bracket under this map. If we look at the evolution
equations described by this bracket, for Hamiltonian functionals of type

H =

∫
h(A0, . . . AN−1)dx, (17)

we obtain a relation between a class of Vlasov equations

ft = { f, H}LP , (18)

and the Kupershmidt–Manin hydrodynamic chains (11)

An
t =

{
An, H

}
KM , n = 0, 1, . . . .

We call Eq. (18) hydrodynamic Vlasov equations; more explicitly, recalling that for functionals of type (17) we have

δH(A0, . . . AN−1)

δ f
=

N−1∑
n=0

hn pn, (19)

these equations take the form

ft =

(
N−1∑

n,m=0

pnhnm Am
x

)
f p −

(
N−1∑
n=0

npn−1hn

)
fx . (20)

Ferapontov and Marshall started to study the differential–geometric properties of such hydrodynamic chains using the
countably infinite set of discrete coordinates An , but instead, it is possible to study these properties by looking at the
corresponding hydrodynamic Vlasov equations directly.
In order to do so, we want to consider Eq. (20) as a kind of (1+1)-dimensional hydrodynamic type system (1). Indeed,
we notice that Eq. (20) is linear with respect to the derivatives ft and fx ; thus, we consider the function

f (p, x, t),

as a vector; the independent variable p is treated as a continuous parameter, analogous to the discrete index in the
components of a finite dimensional vector. We will, for brevity, suppress the dependence on (x, t). In this way, the
hydrodynamic Vlasov equations (20) can be viewed as (1 + 1) hydrodynamic type systems of continuously infinitely
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many equations and variables; indeed they can be written in the form

ft (p) =

∫
V
(

p
q

)
fx (q)dq, (21)

where the kernel V
(

p
q

)
is given by

V
(

p
q

)
=

(
N−1∑

n,m=0

pnqmhnm

)
f p −

(
N−1∑
n=0

npn−1hn

)
δ(p − q). (22)

It is important here that we do not consider (20) as a (2 + 1)-dimensional hydrodynamic type system. Rather, we
consider f p as a functional of f , namely

K [ f ] :=

∫
f (r)δ′(p − r)dr = f p,

where δ′(p − r) is the derivative of the Dirac delta function. Thus, the kernel (22) may be considered as depending on
f , analogously to discrete non-linear hydrodynamic type systems.
To complete our construction, we need to substitute, in a formal way, discrete objects with continuously indexed ones;
namely:

n = 0, 1, 2, . . . p ∈ R

An(x, t) f (p, x, t)

∂h(A0,...,AN−1)
∂ An

δh[ f ]

δ f (p)

Sums on repeated discrete indices Integrals on repeated continuous indices

Using these coordinates, we can construct any tensor object related to a hydrodynamic chain (11), the relation being an
analogue of the classical change of coordinates of a tensor under the map µ. The advantage of this formulation is that,
instead of studying infinite-component tensors, we can consider integral operators, which are much more compact and
computable.
As an example, we write down explicitly the Vlasov formalism for the Kupershmidt–Manin structure (8). This is given
by the metric

Gmn
[A0, A1, . . .] = (m + n)Am+n−1,

and to this metric corresponds, in the Vlasov coordinate, an operator g[ f ], depending on two real parameters

g(p,q)
[ f ], p, q ∈ R (23)

and symmetric with respect to p, q . The relation to the metric in the Vlasov coordinates is the identity∫∫
g(p,q)

[ f ]
δAm

δ f (p)

δAn

δ f (q)
dpdq = Gmn

[A0, A1, . . .] (24)

which is an analogue of the classical change of variables of a (2, 0)-tensor under the map (15). Of course, when a
continuous index is repeated, we integrate with respect to the repeated index. If we take

g(p,q)
[ f ] = − f p(p)δ(p − q), (25)

then, substituting in (24), we indeed have∫∫
g(p,q)

[ f ]pmqndpdq = −

∫
f p(p)pm+ndp = (m + n)Am+n−1.



J. Gibbons, A. Raimondo / Journal of Geometry and Physics 57 (2007) 1815–1828 1821

We notice that, in the new coordinates, the Dirac delta function plays the role of the Kronecker delta δi
j ; indeed, we

have ∑
j

δA j

δ f (p)
δi

j =

∫
δAi

δ f (q)
δ(p − q)dq.

As a consequence of this, we notice that the metric (25) in the Vlasov coordinates has diagonal form. In addition, we
will say that a metric g(p,q) is non-degenerate if there exists an inverse metric g(p,q) such that∫

g(p,α)g(α,q)dα = δ(p − q). (26)

Continuing the analogy, we can now pursue a direct computation of the differential geometric object that we need,
directly in the Vlasov coordinates. So, we define the Christoffel symbols, which are given, in components, by the
following formula:

b
(

p
q, r

)
:=

1
2

∫
g(p,α)

(
δg(α,q)

δ f (r)
+

δg(α,r)

δ f (q)
−

δg(q,r)

δ f (α)

)
dα. (27)

For the metric (25), the Christoffel symbols are

b
(

p
q, r

)
= −δ′(p − q)δ(r − q),

and then the curvature defined in analogy with the classical case as,

R
(

s
p, q, r

)
:=

δb
(

s
p,r

)
δ f (q)

−

δb
(

s
p,q

)
δ f (r)

+

∫
b
(

s
q, α

)
b
(

α

p, r

)
dα −

∫
b
(

s
r, α

)
b
(

α

p, q

)
dα, (28)

is found to be identically zero.

3. The Haantjes tensor for hydrodynamic Vlasov equations

We introduce now the Nijenhuis and Haantjes tensors for a Vlasov equation of hydrodynamic type (18) and (20).
In particular, in the second part of the section we will consider the special case when the Hamiltonian density depends
only on the first three moments, h(A0, A1, A2), so that

δh
δ f

= h0 + ph1 + p2h2,

and we calculate the conditions for a system with such a Hamiltonian to have vanishing Haantjes tensor. As in
the previous examples, this differential geometric result for a Vlasov hydrodynamic equation can be lifted to the
corresponding hydrodynamic chain. Consider first the general case of a Hamiltonian function of type (10). In order to
simplify our notation, we write the kernel (22) as

V
(

p
q

)
= B(p, q) f p − A(p)δ(p − q), (29)

where

A(p) :=

N−1∑
n=0

nhn pn−1, B(p, q) :=

N−1∑
n,m=0

hnm pnqm

are polynomials in p and p, q respectively, whose coefficients are the derivatives of the Hamiltonian. As with the
discrete case, we define the Nijenhuis tensor for a hydrodynamic Vlasov equation as

N
(

p
q, r

)
:=

∫
V
(

α

q

)
δV

( p
r

)
δ f (α)

− V
(α

r

) δV
(

p
q

)
δ f (α)

− V
( p

α

)δV
(

α
r

)
δ f (q)

−

δV
(

α
q

)
δ f (r)

 dα, (30)
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while the Haantjes tensor is then given by

H
(

p
q, r

)
:=

∫∫ (
N
(

p
α, β

)
V
(

β

q

)
V
(α

r

)
− N

(
α

β, r

)
V
( p

α

)
V
(

β

q

)
−N

(
β

q, α

)
V
(

p
β

)
V
(α

r

)
+ N

(
β

q, r

)
V
( p

α

)
V
(

α

β

))
dαdβ. (31)

Let us calculate the Nijenhuis tensor for a general kernel (29); first of all, we have to compute the variational derivative
of V with respect to f . A direct calculation shows that

δV
(

p
q

)
δ f (r)

=

(
N−1∑

n,m,l=0

pnqmr lhnml

)
f p +

(
N−1∑

n,m=0

pnqmhnm

)
δ′(p − r)

−

(
N−1∑

n,m=0

npn−1qmhnm

)
δ(p − q). (32)

If we define

C(p, q, r) :=

N−1∑
n,m,l=0

pnqmr lhnml ,

then the identity (32) may be written as

δV
(

p
q

)
δ f (r)

= C(p, q, r) f p + B(p, q)δ′(p − r) −
∂ B(p, q)

∂p
δ(p − q). (33)

Substituting Eqs. (29) and (33) into the definition of the Nijenhuis tensor (30), and using properties of the delta
function, we obtain

N
(

p
q, r

)
= E(p, q, r) f p + F(p, r)δ(p − q) − F(p, q)δ(p − r),

where E and F are polynomials given by

F(p, q) = (A(q) − A(p))
∂ B(p, q)

∂p
+

∂ A(p)

∂p
B(p, q) −

∫
B(α, q)

∂ B(p, α)

∂p
fαdα

and

E(p, q, r) = (A(r) − A(q)) C(p, q, r) + B(p, q)
∂ B(p, r)

∂p
− B(p, r)

∂ B(p, q)

∂p

+ B(q, r)

(
∂ B(p, q)

∂q
−

∂ B(p, r)

∂r

)
.

Remark 3. It is easy to verify that E is a polynomial in p, q, r whose coefficients are quadratic expressions in the
derivatives of h, for it is defined as a product of polynomials which are linear in the derivatives of h. For F , though, this
fact is less clear, because of the integral in the last term. However, it is possible to write the integrand as a polynomial
in α, since we have∫

B(α, q)
∂ B(p, α)

∂p
fαdα =

∫ 2N−2∑
n=0

Pn(p, q)αn fαdα

= −

2N−2∑
n=0

Pn(p, q)

∫
nαn−1 f (α)dα
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= −

2N−2∑
n=0

n Pn(p, q)An−1.

Here the Pn are suitable polynomials with coefficients quadratic in the derivatives of the Hamiltonian. We observe
that the number of moments appearing in these expressions will generally be bigger than N . Similar dependence on
the An will appear in the calculation of the Haantjes tensor as well.

The calculation of the Haantjes tensor is similar. It follows from the above, with a long but essentially straightforward
calculation, that

H
(

p
q, r

)
= Q(p, q, r) f p. (34)

We will call the polynomial Q(p, q, r), above, the Haantjes polynomial for the related hydrodynamic Vlasov equation.
Remarkably, in the above expression there do not appear any coefficients in the δ-function or its derivative. It would
be interesting to find a deeper explanation for this. In addition, given the Haantjes tensor H i

jk for the corresponding
hydrodynamic chain, we have the following relation:∑

j

∑
k

H i
jk

δA j

δ f (q)

δAk

δ f (r)
=

∫
H
(

p
q, r

)
δAi

δ f (p)
dp,

which is the change of variables under the map (15), introduced in Section 2, for a tensor of type (1, 2). Explicitly:∑
j,k

q jrk H i
jk =

∫
pi Q(p, q, r) f pdp. (35)

So, to study the properties of the Haantjes tensor of a chain it is sufficient to study the properties of the corresponding
Haantjes polynomial. It is possible to show that, for N > 2, this polynomial has the form

Q(p, q, r) =

4(N−2)∑
l=0

3N−5∑
m=0

3N−5∑
n=0

Qlmn plqmrn, (36)

where the coefficients Qlmn are linear or quadratic expressions of type

Qlnm = Qlnm

(
hi , hi j , hi jk, A0, . . . , A4N−7

)
i, j, k = 0, . . . , N − 1,

involving the first, second and third derivatives of the Hamiltonian

h(A0, . . . AN−1),

as well as explicit dependence on the moments

A0, . . . AN−1,

and on ‘extra’ moments not appearing in the Hamiltonian,

AN , . . . A4N−7. (37)

These appear, as explained in Remark 3, when integrals of the form
∫

αn fαdα are evaluated. The Haantjes polynomial
is antisymmetric with respect to q and r . Writing the Haantjes polynomial Q as in (36), Eq. (35) becomes

∞∑
j,k=0

q jrk H i
jk =

∫
pi

(
3N−5∑
j,k=0

4(N−2)∑
l=0

Ql jk plq jrk

)
f pdp

=

3N−5∑
j,k=0

4(N−2)∑
l=0

(
Ql jk

∫
pi+l f pdp

)
q jrk,
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so that

H i
jk = −

4(N−2)∑
l=0

(i + l)Ql jk Ai+l−1.

As a consequence of the equations above, we have, for every fixed i , that

H i
jk = 0 ∀ j, k > 3N − 5.

This fact, noticed in [1] by Ferapontov and Marshall, in this setting turns out to be a straightforward consequence
of the dependence of the Hamiltonian on finitely many moment variables. In order for the Haantjes tensor to vanish
identically, we note that the remaining H i

jk must vanish provided that all the Ql jk do so. Hence, the problem of the
vanishing of a tensor with infinitely many components has been reduced to the vanishing of the coefficients of a
polynomial,

Ql jk = 0, ∀ l = 0, . . . , 4(N − 2), j, k = 0, . . . , 3N − 5.

We look at these conditions as a system on the derivatives of the Hamiltonian h. Using the antisymmetry of the
Haantjes polynomial in q and r , we can reduce the number of conditions, since Q is divisible by (q − r). In the case
N = 3, the Haantjes polynomial reduces to

Q(p, q, r) =

4∑
l=0

4∑
m=0

4∑
n=0

Qlmn plqmrn .

We write

Q(p, q, r) = (q − r)

4∑
l=0

Ml(q, r)pl
;

then, successively requiring the coefficients of M4 and then M3 to vanish leads to 10 partial differential equations of
the form

hi jk = Fi jk

(
hn, hnm, Al

)
, i, j, k, n, m, l = 0, . . . , N − 1.

If these conditions hold, it is easy to verify directly that the Haantjes polynomial Q(p, q, r) is identically zero. We
also recalculated the conditions on the zeroth upper component

H0
i j = 0 (38)

which Ferapontov and Marshall used as necessary conditions for the Haantjes tensor to vanish (see Section 1.1). It is
then straightforward to verify that if these conditions (38) hold, then Q vanishes identically. It thus follows that the
necessary conditions are also sufficient, as Ferapontov and Marshall had conjectured.

4. Dubrovin–Novikov Hamiltonian formalism for hydrodynamic Vlasov equations

Hydrodynamic Vlasov equations can be viewed as a generalization of systems of hydrodynamic type. In particular,
the Lie–Poisson bracket (14) can be seen as a Dubrovin–Novikov Poisson bracket (2). In this section we formalize an
analogue of the DN Poisson bracket for these equations; and we provide two explicit examples, for a class of diagonal
metrics and for the second Hamiltonian structure of the Benney chain.

The main objects for the construction of a bracket of this form has already been defined: given a metric

g(p,q)
[ f ],

we can define the Christoffel symbols and the curvature

b
(

p
q, r

)
, R

(
s

p, q, r

)
,
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given explicitly by (27) and (28). Moreover, in view of the definition of the new Poisson bracket, we notice that the
elements bi j

k are here replaced by

b
( p, q

r

)
=

∫
g(p,α)b

(
q

α, r

)
dα

=
1
2

∫∫
g(p,α)g(q,β)

(
δg(α,β)

δ f (r)
+

δg(β,r)

δ f (α)
−

δg(α,r)

δ f (β)

)
dαdβ.

Given these objects, we can define an infinite dimensional Poisson bracket of hydrodynamic type as

{K , H} :=

∫∫∫∫
δK

δ f (p, x)

(
g(p,q) ∂

∂x
+ b

( p, q
r

) ∂ f (r)

∂x

)
δH

δ f (q, y)
dpdqdrdx, (39)

where K , H are functionals of the type (17). Given a Poisson bracket of type (39), the related Hamiltonian evolution
equations are then

ft (p) = { f, H}

=

∫
g(p,q) ∂

∂x
δH

δ f (q)
dq +

∫∫
b
( p, q

r

) ∂ f (r)

∂x
δH

δ f (q)
dqdr.

4.1. Diagonal metrics

In order to find explicit expressions for the Christoffel symbols and of the curvature, we now restrict ourselves to
the case when the metric g is diagonal with components g(p,q) of the form

g(p,q) =
1

k[ f ]
δ(p − q). (40)

The function k[ f ] can depend on f and finitely many of its derivatives with respect to p. The first advantage of a
diagonal metric is that the inverse metric has components given by

g(p,q)
= k[ f ]δ(p − q), (41)

and so Hamilton’s equations take the simpler form

ft (p, x) = k[ f ]
∂

∂x
δH

δ f (p)
+

∫∫
b
( p, q

r

) ∂ f (r)

∂x
δH

δ f (q)
dqdr.

For general k[ f ], the calculation of the Christoffel symbols and of the curvature presents many difficulties, due to the
presence of higher p-derivatives of f . On the other hand, the simplest case, when k[ f ] depends only on f and not
on its derivatives, turns out to be of relatively little interest, as Hamilton’s equations became the direct sum over R of
one-dimensional (N = 1) Poisson brackets of type (2). As an example, the (α − β) structure (13), in the case α = 0,
belongs to this class, with

g(p,q)
=

f (p)

p
δ(p − q).

In this section, we develop the first non-trivial case, when the function k depends only on f p. We have the following.

Proposition 1. If for all p, q, the function k depends only on the first p-derivative of f , i.e.

g(p,q) =
1

k[ f p]
δ(p − q), (42)

then the Christoffel symbols have the form

b
(

p
q, r

)
=

k′
[ fq ]

k[ fq ]
δ′(p − q)δ(r − q) −

1
2

k′′
[ fq ]

k[ fq ]
fqqδ(p − q)δ(r − q), (43)
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where k′, k′′ are the first and second derivatives of k respectively. The metric g is flat if and only if k[ f p] is linear in
f p.

Proof. The proof is a direct computation. In the calculation of the Christoffel symbols (27), we note that for the metric
(42) we have

δg(p,q)

δ f (r)
=

k′
[ f p]

k[ f p]2 δ′(p − r)δ(p − q),

and substituting in the definition (27) of the Christoffel symbols, this leads to

b
(

p
q, r

)
=

1
2

∫
k[ f p]δ(p − α)

(
k′

[ fα]

k[ fα]2 δ′(α − r)δ(q − α) +
k′

[ fα]

k[ fα]2 δ′(α − q)δ(r − α)

+ −
k′

[ fq ]

k[ fq ]2 δ′(q − α)δ(r − q)

)
dα

=
1
2

k′
[ f p]

k[ f p]
δ′(p − r)δ(p − q) +

1
2

k′
[ f p]

k[ f p]
δ′(p − q)δ(p − r) + −

1
2

k[ f p]k′
[ fq ]

k[ fq ]2 δ′(q − p)δ(r − q).

Rearranging, we obtain Eq. (43). For the calculation of the curvature (28) the technique is the same, and we obtain

R
(

s
p, q, r

)
=

k′′
[ f p]

k[ f p]

(
δ′(p − r)δ′(p − s)δ(p − q) − δ′(p − q)δ′(p − s)δ(p − r)

)
+

1
2

k′′
[ f p]

k[ f p]

(
δ′′(p − q)δ(p − s)δ(p − r) − δ′′(p − r)δ(p − s)δ(p − q)

)
+

1
2

k′′′
[ f p]

k[ f p]
f pp

(
δ′(p − q)δ(p − s)δ(p − r) − δ′(p − r)δ(p − s)δ(p − q)

)
.

It is elementary to see that the condition k′′
[ f p] = 0 leads to the vanishing of the curvature tensor. On the other hand,

evaluating the result above with suitable test functions, it is possible to prove that the condition is also sufficient. �

So, a metric of type (40) is flat if and only if has the form

g(p,q) =
1

a f p + b
δ(p − q),

with a, b not depending on f . The related evolution equations are then

ft (p, x) = (a f p + b)
∂

∂x
δH

δ f (p)
− a

∂ f (p)

∂x
∂

∂p
δH

δ f (p)
.

In the special case a = 1, b = 0, we obtain the canonical Lie–Poisson bracket (18), with Poisson operator of the form

π (p,q)
= f pδ(p − q)

∂

∂x
+

∫
δ′(p − q)δ(p − r) fx (r)dr. (44)

4.2. The second Hamiltonian structure for the Benney chain

The second Hamiltonian structure for the Benney equation (7) is defined by the local Poisson operator

(Π2)
kn

= (G2)
kn ∂

∂x
+

∑
m

(B2)
kn
m Am

x , (45)

where the metric G2 has components

(G2)
kn

= kn Ak−1 An−1
+ (k + n + 2)Ak+n

+

n−1∑
i=0

(k + i)Ak+i−1 An−i−1
+ −

n−2∑
i=0

(n − i − 1)Ak+i An−i−2,

(46)
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and the Christoffel symbols are given by

(B2)
kn
m = kn Ak−1δn−1

m + (n + 1)δk+n
m −

n−2∑
i=0

(
n Ak+iδn−i−2

m

)

+

n−1∑
i=0

(
i An−i−1δk+i−1

m + (k + i)Ak+i−1δn−i−1
m

)
. (47)

The Hamiltonian density is 1
2 A1. This structure appeared for the first time in [18], where Kupershmidt derived it

as a dispersionless limit of the second Poisson structure of the KP hierarchy. Recently, Błaszak and Szablikowski
rediscovered it [19,20] using the semiclassical R-matrix approach. Using the techniques developed in the previous
sections, we obtain that the metric (46) becomes, in the Vlasov picture,

g(p,q)

2 = f p fq − p f pδ(p − q) + f (p)δ(p − q) +
f (p) fq − f (q) f p

q − p

+ δ(p − q) f p

∫
f (r)

r − p
dr − δ(p − q) f (p)

∫
f (r)

(r − p)2 dr,

and the Christoffel symbols (47) are then found to be

b2

( p, q
r

)
= f pδ

′(q − r) − qδ′(q − r)δ(p − r) +
f (q)

(q − p)2 δ(p − r) − δ(p − q)δ(p − s)
∫

f (s)
(s − p)2 ds

+ δ′(q − p)δ(p − r)

∫
f (s)

s − p
ds

+
f p

r − p
(δ(p − q) − δ(r − q)) +

f (p)

r − p

(
δ′(q − r) − δ(q − p)

)
,

where the integrals are to be read as principal values or finite parts as appropriate. In analogy with the
Kupershmidt–Manin structure, if we consider a Hamiltonian density depending on a finite number of moments
h = h(A0, . . . , AN−1), we obtain Vlasov equations of the form (21), with kernel V

(
p
q

)
given by

V
(

p
q

)
=

N−1∑
n,m=0

hnmqm

(
−n An−1 f p − pn+1 f p + pn f (p) + −

n−1∑
i=0

pi An−i−1 f p

+

n−2∑
i=0

(n − i − 1)pi An−i−2 f (p)

)

+

N−1∑
n=0

hn

(
−n f pqn−1

+ (n + 1)pnδ(p − q) + δ(p − q)

n−1∑
i=0

i pi An−i−1

− f p

n−1∑
i=0

pi qn−i−1
− n f (p)

n−2∑
i=0

pi−1qn−i−1

)
.

Consider now the Galilean transformation

p 7−→ p + α,

where α is a constant. It is easy to verify that, under this change of coordinates, we have

π2
(p+α,q+α)

= π2
(p,q)

+ απ1
(p,q),

where π1 = π is the Poisson operator (44). Thus the brackets (44) and (45) are compatible.
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5. Conclusions and open questions

We have considered the problem of the integrability of hydrodynamic chains which are Hamiltonian with respect
to the Kupershmidt–Manin Poisson bracket. It turns out that this problem can be reduced to the study of the
corresponding hydrodynamic Vlasov equation, for which the differential geometric objects related to a chain become
integral operators. Using this formulation, we calculated the Haantjes tensor explicitly and found the conditions for it
to vanish, showing that the conditions found by Ferapontov and Marshall are in fact sufficient. In addition, we have
constructed a suitable Dubrovin–Novikov Hamiltonian formalism for hydrodynamic Vlasov equations, getting explicit
conditions for a class of diagonal metrics to be flat. Finally, we have found the formulation, in Vlasov variables, of
the second Hamitonian structure for the Benney hierarchy. It would be interesting to study the analogous conditions
on the Hamiltonian for the vanishing of the Haantjes tensor for systems with this Hamiltonian structure.
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